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Stochastic Processes and their Applications 24 (1987) 1-18 1
North-Holland

ERGODIC PROPERTIES OF STATIONARY
STABLE PROCESSES

Stamatis CAMBANIS, Clyde D. HARDIN, Jr.,* and Aleksander WERON**

Center for Stochastic Processes, Department of Statistics, University of North Carolina,
Chapel Hill, NC 27514, USA

Rectae 22 Mariass AFOSR-TR. 87-1035

We derive spectral necessary and sufficient conditions for stationary symmetric stable processes
to be metrically transitive and mixing. We then consider some important classes of stationary
stable processes: Sub-Gaussian stationary processes and stationary stable processes with a har-
monic spectral representation are never metrically transitive, the latter in sharp contrast with the
Gaussian case. Stable processes with a harmonic spectral representation satisfy a strong law of
large numbers even though they are not generally stationary. For doubly stationary stable processes,
sufficient conditions are derived for metric transitivity and mixing, and necessary and sufficient
conditions for a strong law of large numbers.

AMS 1980 Subject Classification: Primary 60E07, 60G10, 47D10, 28D10.

stable processes * ergodic theory * stationary processes * spectral representations

1. Introduction

Stationary symmetric a-stable (SaS) processes have been characterized in [12]
and form a richer, and therefore more unyielding class of processes than the
stationary Gaussian processes. For instance, while all stationary Gaussian processes
which are continuous in probability have a harmonic spectral representation, this
is not so in the stable case; and when 1 <a <2 the class of SaS moving averages
is disjoint from the class of regular Sa$ processes with a harmonic representation,
whereas in the Gaussian case, these two classes coincide (cf. [S]).

Using their description developed in [12], we derive necessary and sufficient
conditions for stationary Sa$ processes to be metrically transitive (Theorem 1)} and
mixing (Theorem 2). We then consider some important special classes of stationary
Sas$ processes. We show that sub-Gaussian stationary processes are never metrically
transitive (Theorem 3). SaS moving averages are of course mixing, and stationary
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** Now at the Wroclaw Polytechnic, Wroclaw, Poland

0304-4149/87/83.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

87 9 24 184
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SaS solutions of linear, constant coefficient, stable stochastic differential equations
are strongly mixing; the latter is the continuous time analog of a result in [13] for
discrete time autoregressive SaS processes and is established likewise. Stationary
SaS processes with a harmonic spectral representation are never metrically transitive
{Theorem 4), in sharp contrast with the Gaussian case. Also SaS processes with a
harmonic spectral representation satisfy a strong law of large numbers (Theorem
5} even though they are not generally stationa:y; il.is is an L, analog of results in
[10] for L.-stationary processes. Finally in Section 6 we introduce doubly stationary
SaS$ processes—a new class of SaS stationary processes with “stationary™ spectral
representations which includes Gaussian, a-sub-Gaussian and SaS moving average
processes—and give sufficient conditions for metric transitivity (Theorem 6) and
mixing (Theorem 7), as well as necessary and sufficient conditions for them to satisfy
the strong law of large numbers (Theorem 8).

We concentrate on real processes defined on the real line, but similar results hold
for real sequences, as well as real processes defined on certain more general groups
(see e.g. [21] where ergodic properties for harmonizable SaS processes on LCA
groups are discussed). The assumption that the process is real is needed when
considering metric transitivity and mixing, because of the use of the dense set of
trigonometric polynomials (cf. [19, p. 163]), but is of no significance when consider-
ing laws of large numbers.

We now introduce some basic notation and properties used throughout the paper.
A real random variable Y is SaS, 0<a <2, if E exp(irY)=exp(—c¢,|r|") for all r
and some ¢, = 0. A process X ={X,: —c < r<x}is SaS$ if all finite linear combina-
tions ¥ a,X, are SaS. For a Sa$ random variable Y, set | Y|, =c¢\". Then || - |[."
defines a norm in the case 1 = a <2, and a quasi-norm in the case 0< a < 1, on the
linear span of the SaS process X, (X)), which metrizes convergence in probability.
Also, for 0 < p < a,

(E|Y|")' " =C(p,a)| Y]

where the constant C{p, a) depends only on p, a and not on Y [22]. Stationary
SaS processes X with 0< a < 2 have finite dimensional characteristic functions of

the form
N o
(}_‘ a,,U,")d>|I ] (n
n -\ n

and thus the following spectral representation in law

~
E exp{i v a,,X,"] exp{ -

n

LX, =X 1 r};” (U, dNAYdZ(A)Y, - x < 1+ r} )
[

(12]. Here (E, X, u)is a measure space, ¢« L AE X )2 L (), {U,, - 1o 1)
15 4 group of isomdtries on L, (u), and Z is the canonical independently scattered
SaSmeasureon( F, X ). ie torall disjointsets £, .., F,« X of tinite u-measure,
ZiE), .., Z(E,)areindependent with £ exp{irZ(E, 1} - exp{ iri"ut E}, so that,
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for all fe L,(u),

£ expfi [ raz} =expt-wr121

Denoting by #x = o{X,, —0 < 1 <} the o-algebra of X-measurable events, the
shift transformation associated with the stationary Sa$ process is defined in the
usual way for all X-measurable (i.e. #y-measurable) events and random variables,
so that e.g. g(X,,..., X, ) shifted by r becomes g(X, ..,..., X, ,,) (cf. [19]). For
the notions of metric transitivity and mixing, and for laws of large numbers, it is
necessary that the process {%,, —o¢ < r <oc} obtained by shifting an X-measurable
random variable 7 be measurable. This is the case if the original strationary Sa$
process X is measurable, or has a measurable modification (cf. [19]). In view of
the following property we assume without further notice that the group {U,} is
strongly measurable on all of L”(u) and that u is o-finite.

Theorem 0. For a siationarv SaS process X with spectral representation (2) the
Jollowing are equivalent:
(i) X has a measurable modification,
(i) X is continuous in probability,
(iii) {U,} is strongly measurable on F 25p{U,¢}, ...,
(iv) {U,} is strongly continuous on F.

Proof. By [6], X has a measurable modification if and only if the map LR~ L (u)
givenby L(1) = U,¢ is measurable, since the (quasi-) norm || - || on #(X ) metrizes
convergence in probability, and by (1) the linear extension of the map X, U, is
an isometry of #(X)into [, (). If L is measurable, its range is separable, and we
may thus assume without loss of generality that (E, X, u) is o-finite. More sig-
nificantly, measurability of L implies measurability of the map 1— U,/ for each
Je€F, ie. strong measurability of the group {U,} on F. This, how-
ever, implies the strong continuity of {U,} on F (see [8, p. 616]), and hence that
X is continuous in probability (since X, - X, in probability if and only if
MU~ U, dll; .~ 0). Thus (i) =>(iii)=>(iv)=>(ii) and the proof is complete by the
well known property (ii)=>(i). (]

That (1) implies (ii) when « =2 (in fact for all weakly stationary processes with

finite second moment) was shown in [7].

2. Metric transitivity

A stationary process X is called metrically transitive or ergodic if any of the
following equivalent conditions is satistied (¢f. [9]): (i) the shift invariant measurable
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sets # of X have probability zero or one; (ii) for each X-measurable random
variable 1 with E|n|< 0,

(T
l‘f‘l TL n,dr=En as. 3
where 7, is 7 shifted by r; (iii) whenever A€ o(X,, t<0), Be o(X,, t 20) and B,
is the event B shifted by 7,

l T
;im ?J- P(AnB,)dr= P(A)P(B) a.s. (4)
- X 0

By a result of Maruyama and Granander [19, 9], a stationary Gaussian process
is metrically transitive if and only if its spectral measure has no atoms. For general
stationary stable processes, we have the following characterization.

Theorem 1. A stationar, SaS process X with 0< a <2 and spectral representation
(2) is merrically transitive if and only if for each hesplU, b, ~x <1<}, .,

l 1
lim — Uh~h|:dr=2|h|: 5)
lim TJ'” I I'sdr=2|h] (
and
I
lim — Uh—h|X dr =4 b
,.IP]TJ:) U= hil5" dr = 4|k (6)

Proof. As in the standard proof for Gaussian processes, it suffices to have (3) for
r.v.’s n of the form n = expli }_: , @.X;_ ], and this is where the fact that X is real
is used (see [19] or [9]). Then, putting h = (E: ca U )b, we have 7, =
explif, UhdZ] and

1 (" (!
Y g_J 7d1:—j ex [lj L,hdZ]dT
)" Tl P,

By Birkhoff's theorem [19], Y; = E(n| #12 Y, a.s. Thus (3)is satished. ie. ¥, = Fn.
if and only if E|Y.["=|EY.[’,if and only if lim; E|Y," = lim,/FY,|". But

U
EY, = ;J expl — | Uh|i)dr =expl IIh]],
and
1 H !
ElY,| - F,[ I expl - (U, - U Al | dr der
u Y]
Since |x|" +{¥|" —)x - ¥|” is a positive detinite function of v and v, (L hwAr "

WM = LU, - UBRA" is a positive definite function of 1 and ¢ (or cach
A, and thus so is its p-integral over F: 2)hll. il U, vhy Since the latter
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depends only on the difference 7- o, and is continuous, we have by Bochner’s

Y R

where » is a finite symmetric measure. Then proceeding as in [9,p. 77], we obtain

E }' 2 1 ! I ~ )
%%—TJ j exp“ e ‘”"du(ub]d‘rdtr
R | a a N

theorem

2kl - U, = U, Al

o (T
;l+kll—kv!?"‘ jﬂl jn {4[ -cnr '”"d"““‘u'}de(r
ey ! o)
I oen k!

where ' is the k-fold convolution of v. 1t follows that X is metrically transitive
il and only #*{0} =0 for all k -1 tand all b Sp{UG, - 1o ) Lotu
Since the function f e ™ detur 2 LA b s even, we have by the

inversion formula
l I
{0 YThl lim J e .h hl:dr
ro T,

and thus #10} 040 and only if (511 satistied. Also

T I vioabdeoa S el et N ey i is ssmmetrig!
l ]

hm [ J (2h. U .h hoy dr thy Wiener's theorem [ 15]
I o

!

1 (! I
$h [ 4 h " hm J Uh h dr+ him J L h h [ ds
re 7 . ree T,

from which it follows that ¢ {0} -0 Ak 1,2 ifand onlv i t5hand 160 are satistied
The proof is completed by noting that (from the above caleulationt ¢ {0} timplies
 has no atoms and thus ¢ {0} - 0 for all A -2

When a stationary Sa§ process X is metrically transitive we can use Birkhott's
theorem to estimate its covariation function which plavs a rofe analogous to that (]
of the covariance when a - 2 (4], Indeed when 1+ p- o 2 we have ! |

! I ! A Covi X, N Lo
NN ddr— EIXLXT Y = Cripeay — T

r)., ver X! ;

where v 'v" sign(x) and the equality follows from [3]. For 7 0 this gives the !

scaling constant of the process: A

1 -

'
T J X" de ’——* EIX|"=C"(p, a)|| X,ll%.

A-l 20
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3. Mixing

Astationary processis called mixing it either of the tollowing equivalent conditions
Is satstied: () with A BB, asin (4

hm PiaA B, P PeR)y, (7
{ -

1y whenever & s (N, 0 Oemeasurable, s €X,0 1 - 0b-measurable, Fé AW
Frn o v oand n,oas p shifted by T we have

lim Fiény FE by (8
I .

Te s clear that mivang s i stronger property than metrie transiivity . A stationan
Gausstan process with harmonic spectral representation X Re | e T dWen s
mivang it and only atf s covarniance Ro T \ xS dpea tends o seto as 1o
For non-Gaussian stattonary stahle processes, we have the following charad

tenzation,

Theorem 2. A vtattonary SaS process Nowith O a0 - 2 and spectral represeniation
2y o omvng b and onlv ot for ererv o g o spilo b 00 L v and h
~pf( Jhot D ] 7R

hm e« 0l  h ¢ o h O

'

. . . . N
Proof. Tt ~uthces to have oS dor rv s of the form o exphirY 0 a, N [0 0

A ~ A\
coeaplry b s 0 Putting b a b e N bl o we have

Fe Ir\p[]' ud/] eapl v .
by -:\pil ‘ L. h d/] avpl Coh b expl L

Fooono IL'\.[\[I‘ R | /1\1/} eap| e LR

from o which 2o tollows

4. Sub-Gaussian processes

A process Vs cabled oaab Graassan o s tinte dimienstonal chiaractenst.

futctions are of the torm

"\"[\’I NI \'\p{ Soua R :
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where R(1, s) is a positive definite function, or equivalently, if X, = A"*G,, ~0o <1<
X, where A is; ositive a/2-stable and independent of the Gaussian process G which
has mean zero and covariance function R. We show that stationary sub-Gaussian
processes are not ergodic.

Theorem 3. Sub-Gaussian stationary processes are never metrically transitive.

Proof. Since for a zero mean normal r.v. £ we have E|£]" = D,(E£%)"'?, where the
constant ), does not depend on &, it follows that

N N 2 a2
E exp{i v a,,X,“} =exp{ - [15( y a,,G,"> ] }
no| n

N a
S 4G, }
N

n

:exp{—z “D'E

Hence
(X, =X« 1+ x} —}{2 p ! I U,G‘.dZ,—X<~’1<X!
2 J

where G, - UG, and Z is the canonical independently scattered SaS measure on
(f2. .+, Py.Since X isstationary, sois GG. Checking condition (S) with h = G,,, we have

1 (" . D, ('
| Uh hyrdr = FIG, -G " dr = — (E
I " T 11 T 1]

D, (' .
- 'T' (2[R - R ~dr

b ! Rimy\" "
DR (2 1 - dr
Tl Ri)
1! Ri7) .
chl 211 - [dr tJensen)
TrJ. Ry ‘
/ oty
—e h':(l[l ul ’]) - ik
1o ROy

where Rizt [ ¢ dutA), and the inequality is strict for 0- a - 2 even when
i 0b 00 Hence condition €51 15 not satisfied and X' cannot be ergodic.

G.- G T dr

The ergodic decompaosition of & sub-Guaussian process X can be easily described
i terms of the ergodic decomposition of the corresponding Gaussian process ¢
rwhich may or may not be metricaliy transitive) using the fact that, modulo null




8 S. Cambanis, C.D. Hardin Jr., A. Weron | Stable Processes

sets, the o-field of invariant sets of X equals the smallest o-field containing the
o-field generated by the a/2-stable r.v. A and the o-field of invariant sets of Y.

5. Fourier transforms

We say that a complex Sa$ process X has a harmonic spectral representation if

X,=f et dW(r), —co<t<oo,

-

where W is a complex independently scattered SaS measure on (R', B', u), u
finite. Then for every complex fe L,(u),

Eexp{iRe“r fdw]}=exp{—r r [Re[f(A) e’]|* duv(a, 0)}

(10)

where v is a measure on the Borel subsets of R' x (=1, 7] with a marginal u : v{B x
(~m, 7]} = n(B) [14, 2]. X is stationary if and only if the measure W is rotationally
invariant, i.e. the distribution of the process {¢'*W(B), Be B'} does not depend on
&, in which case v =pu X (Leb/27) and for fe L, (u) we have

pesofine] [ raw]}=ese|c. | it au)

where C, =(2m) '[”_|cos 6]* dé. Unlike the Gaussian case a = 2, where all station-
ary Gaussian processes which are continuous in probability have a harmonic
representation, there are stationary SaS processes with 0<a <2 which are
continuous in probability but do not have a harmonic representation, such as
sub-Gaussian processes and moving averages of SaS processes with stationary
independent increments [5].

For a real (stationary) SaS process X we say that it has a harmonic representation
if

X,=Rej e dW(a)

where W is as above (and is rotationally invariant). We show that when 0 < a <2
such processes are never ergodic, in sharp contrast with the the stationary Gaussian
processes (a = 2) which are ergodic if and only if the spectral measure u has no
atoms. This has also been indicated in [17]. Even though these processes are not
ergodic, their spectral measure u can be estimated consistently under the usual
assumptions [18].
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Theorem 4. A real stationary SaS process with a harmonic representation is never
metrically transitive when 0 < a <2,

Proof. With some minor adjustments in the proof of Theorem 1, we have that X
is metrically transitive if and only if

1 (7
;J [(e™ ~1)h(A)||5 dr - 2}iA|l5,
y (11)

1 T i 2a @
] he - vmoiz ars s,
(1]

for all complex he L,(n). But

1 T . x l T
;L (e —l)h()‘)lladf=_[x|h()«)l {7‘[0

2 TA/2 .
=J'H0|h()«)l {?;J; 2 sin uf du}dp.(A)

] kil
——»—J' |2 sin u|* du- J [h|* du
wJo A=0

T-x

o[
A=Q

Note that when a =2, D, =2 and thus (11) is satisfied provided x{0} =0. We now
show that when 0<a <2, D, <2, and thus (11) is not satisfied and X is not
metrically transitive. Indeed, by Jensen's inequality we have

. TAC
2sm7l d-r}du()\)

o

du.

l mw
D,,=—j |2 sin u|* du
0

Ed s - l " i N /2
j (|2 sin ul‘)""dus(—J’ |2 sin u|’du)
o ™ Jo

:

E]

A |-

a/

i
[ 8]

We now turn our attention to laws of large numbers (LLN). We consider complex
processes from which the results for their real parts follow immediately. Let X be
a complex SaS process with a harmonic representation. It is easily seen that

I T b 1 T
7.4[' X.dl=j ‘{7,[, e dl}dW(A)

-— ‘[ l((H(A)dW(A)=W{O}

J -

in probability. Thus X « tisfies a weak LLN if and only if W{0}=0. When X is
stationary (i.e. W is rotationally invariant) and 1 < a < 2, then by Birkhofl's theorem
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the above convergence is also a.s., and X satisfies a strong LLN (SLLN) if and only
if u{0}=0. Following the approach in [10], where L.-stationary processes are
considered, we show that this latter property remains true even when X is not
stationary.

Theorem 5. Let X be a complex SaS process with harmonic representation and
1<a=2 Then

1 (7
?J:) X, dt - wW{0} a.s.

and X satisfies a SLLN if and only if {0} =0.

Proof. The proof parallels that of theorems 1' and 2’ in [10] as outlined on pp.
303-304. Here we only point out the main adjustments necessary when 1 < a <2.
The first step is to show that it suffices to establish the a.s. convergence along the
integers since

1 {7 I
Z,= sup .——J X,d1~;J' X,dll—*O.

- I T ) k=

Indeed from

1 1 [t 1 [+
=-— = X,idr+— .
4 k+lkJ:.l | dr kL X[ de

we obtain, for 1< p< a,

| 1 1 (* e [8 1p
r I'g._._. c r — r
{EZT) kH{EkL x| dr} +k{EL by dr} .

By stationarity E|X,|” = Const < x for all ¢, and thus {EZ{}' "< Const k ' so that
f_; , EZ < x from which it follows by the Borel-Cantelli lemma that Z, -~ 0 as.
The second step is to show that, since

l k Y elkA __l
— X, dr= - dWi(a),
k ,[, ,[ . 1kA (A)

it suffices to show

thA

e —1
Y, 2 dW(A) — W0} as.
¢ JA., 1kA ( k foy as

since the remainder R, =], (e™ = 1)(ika) ' dW(A) tends to 0 with k a.s. Indeed
we have
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Now with X=[fdW, it follows from (10) that [Re Xle=
I7 17 IRe f(A)e"’|" dw(A, 8). The expression for ||[Im X || is then obtained simply
by replacing f by —if. It then follows that

E|X|" < E|Re X|"+ E|lm X|" = Const{||Re X%+ |Im X |5}

X ™ p/a
=Const{(J‘ J [Re f(A) 1" dw(a, 0))
x kil _ pla
+(J j |Re —if(A) €| dV(A,O)) }

< Const|/f]|7 = Const|| X% (12)
Thus for each e >0 and 1<p<a,

E|R."

R _ Const
P(|Rkl>e)s—sl,——$Constbp‘~l—$-—on—S~

€ e’k”

and R, -0 a.s. follows from Borel-Cantelli.

The third step is to show that it suffices to establish a.s. convergence of Y, along
the subsequence k =2" since supan. go21| Yy — Yo >0 as. The fourth step is to
show that

an—j dw(@) — 0 as.
Al 2" "

and the final fifth step that
J dW(A) — W{0} as.
fale 2" n

These steps are established by adjusting Gaposhkin’s arguments in ways similar to
those exhibited in steps one and two—and need not be shown here.

We finally show that W{0} =0 if and only if | W{0}||.. = w{0} = 0. This follows
from (12) and

X . <|Re X|..+|/im X]|., = Const{(E|Re X"V +(Eflm X|")'"

<Const(E|X|")'7. O

6. Doubly stationary processes

We introduce in this section a new class of stationary Sa$ processes which we
term doubly stationary. They are, loosely, those SaS processes whose spectral
representations are themselves stationary.
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To be more precise, let (E, 3, 1) be an arbitrary (finite or infinite) measure space
and let {f,: te G} be a coilection of measurable functions on E. G is in general
some group—for the purposes of this paper, we take it to be Z or R. Call {f;}
stationary if the p-distribution of the vector (f, +.,..., f, +,) is independent of se G
for each fixed choice of n and t;€ G. A SaS process will be called doubly stationary
if it has the same distribution as some process {X, =fEf,()1)dz(/\): te G} where
{fi}= L.(E, X, i) is stationary and Z is the canonical independently scattered
random measure on (E, X, ). It is clear by checking characteristic functions that
doubly stationary SaS processes are also (strictly) stationary. Example (iv) below
shows the converse does not hold.

For stationary { f,} we may find, just as in the case of a stationary process, a group
of measure-preserving set transformations {T,} of £ = o{f,} such that f, = T,f,. (We
also denote by T, the induced map on measurable functions.) Conversely, any group
of measure-preserving set transformations defines stationary functions {T,f,} for
arbitrary measurable f,. Thus a SaS process is doubly stationary if and only if it
has a representation as in (2) of Section 1, where the group {U,} is induced by such
a group {T,}. This equivalent definition will be more useful for us, if not as
picturesque.

Examples. (i) Every mean-zero stationary Gaussian process is doubly stationary. To
see this, let {X,} be a mean-zero stationary Gaussian process on ({2, #, P) and let
Z be the canonical independently scattered Gaussian measure on (E, 3, u)2
(0, F, P).Then{Y,2 j” X,(w) dZ(w)} is seen (by checking characteristic functions)
to have the same distribution as {X,}. Hence {X,} is doubly stationary.

(ii) Every stationary sub-Gaussian process is doubly stationary. Let { X,} be a-sub-
Gaussian on (2, %, P), represented as X, = A"’G, as in Section 4. As seen in the
proof of Theorem 3 in Section 4, {X,} is distributed as {Y,éfn G (w)dZ(w)}
where Z is the canonical independently scattered SaS random measure on ({2, ¥, P)
and ¢ is a constant depending on a. {G,} is stationary since {X,} is, and thus {X,}
is doubly stationary.

(iii) All SaS moving averages are doubly stationary. In this case, the group {7T;}
is the translation group on (G, Haar measure).

(iv) There exists a stationary Sa$S process, continuous in probability, which is not
doubly stationary. For simplicity we take a = 1, although this example may be altered
easily to work for each a€(0,2). Define U,:L'[0,1]~> L'[0,1] for real t by
(US)(x)=2x"""f(x"). Itis easily checked that {U,} is a strongly continuous group
of linear isometries, so that {X,%j:) U,1p.1dZ} is a stationary SaS process con-
tinuous in probability. Here, Z is Cauchy motion on [0, 1] (the canonical S1S
independent increments process on [0, 1]). We claim that {X,} is not doubly
stationary.

For, if {X,} were doubly stationary, we could find a measure space (E, X, u), a
group of measure-preserving set maps T,: X - X and a function ¢ € L*(u) such
t— T, is a spectral representation for {X,}. Since r— U, 1,0,; is also a spectral
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representation for {X,} we must have that |£ AU, foll o011 = 12 A Tl 1o, for all
choices of A; and 1. Hence the map U,1;0,,~> T,¢ extends to a linear isometry of
5p{ U, 1jo.1)} 1oj0.; Onto SP{ T,d}+,.,. This isometry in fact extends to all of L*[0, 1]
by {11, Corollary 4.3], since Uylpo,)=1(9,; and Ul )(x)=2x are both in
Sp{ U, 10,13} Call this extension M. Again by [11, Corollary 4.3}, M has the form
(Mf }(x)=h(x)(Sf)(x) where S is induced by a regular set isomorphism of (3,
Lebesgue) to (=, n). Since MU, 1o,;= T,¢ we must have that, calling id(x) = x,

T.p = MU 111y = M(2id™") = hS(2'id™ ") = 2'h[ S(id))* .

Since 0=<id <1 a.e.,, we have that 0= S(id)<1 a.e. [u]. If 0<x <1 we have that
2'x*7'5 0 as 1>0. But T,¢ must be equidistributed for all 1 (since T, is measure-
preserving), and 2'h[S(id)}* ' by the above is not, since by choosing t large enough
we may for any e>0 force u{[2'aA{S(id)]* '|< ¢} as close to u(E) as desired.
Therefore {X,} cannot be doubly stationary. [

Remark. In view of the representation (2) and the fact that groups of isometries on

-L" for a2 are determined (essentially) by groups of transformations on the

underlying measure space (see [16] or [11] for more details), it is natural to expect
that many stationary SaS processes can be shown to be doubly stationary by
“‘appropriately altering’ the measure space upon which {U,} is defined.

We now turn to the ergodic properties of doubly stationary processes. For the
remainder of this section, we assume that {X,} is a doubly stationary SaS process
with spectral representation t— T,¢ where {7} is a strongly measurable group
induced by a group of measure-preserving set transformations on the arbitrary
measure space (E, 2, u), and ¢ € L“(u). We also assume WLOG that £ = o{T,¢}.
Denote by ¢ the invariant o-field of {T;}, #={Aec X: TA= A for all t}.

The first result gives a sufficient condition for metric transivity. Note that condition
{13) below on our “shift” {T,} of X and condition (4) of Section 2 on the shift in
(€2, #, P) are of a fundamentally different nature—(13) is a kind of “‘asymptotic
disjointness” condition, while (4) is a kind of asymptotic independence condition.
This should not be too surprising, however, since it is known (see [20]) that two
jointly Sa'S r.v.'s are independent if and only if their spectral representatives have
disjoint support.

Theorem 6. {X,} is metrically transitive if for all sets A, Be X of finite u-measure

l r
Iim—J u(AnT,B)dr=0. (13)
r-xT)J,

Condition (13) guarantees that u(E)=oc, for otherwise (13) would be false for
A=B=E
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Proof. We first claim that it is enough to verify (5) and (6) of Theorem 1 for all
simple functions g. The following inequalities are valid for real x and y:

el = vl <|x+p|" < |x|* +]y|* for0<a<l,

el Iyl —alx-+ ol vl byl < [+ b+ alxl Yyl for 1= a2,

The first is well-known and the second follows from [18]. Call x=T,g—g, v=
g—h+T/(h-g)and z=x+y = Th—h, and integrate the inequalities (using Holder
in the second) to obtain

aHlyls, 0<a<i,

Ixlls = Mvlls =<zl =lx

-1
E
[$3 - [{]

Ixle=lvlla —allzlla yll. <lzle<Ixte+1yls+ealx
Isa<s2.

Now note that for arbitrary fixed h, ||y|. can be made uniformly small in ¢ by
choosing g simple with ||h —gll, small, and that || z||, is uniformly bounded in &
These observations coupled with the inequalities above show that if (5) holds for
all simple functions g, then it holds for all h € 35p{T,¢} (and in fact forall he L"(u)).
Squaring the inequalities above shows that the same thing can be said for condition
(6). The claim is therefore true.

Now let h :}:;‘4) 14, € L"{u), with {A;} a partition of E and A,={h =0} (and
of course ¢,=0). Then u(A;)< for j=1 and u(A,)=x. Call A(1)=T,A NA,.
Then Th~h=Y clya —2 ¢4 :Z:;m (¢i— ¢4, where {A, (1)} partitions E,
and we have

ITh=hli= T lo-¢l"u(A, ). (14)

070

Condition (13) guarantees that

7
lim T'J | Th = {7 de
- 0

T(n n
=lim T : Jl { Z. e, (A1) + ‘_‘l |C,|”/.L(A(,,(l))} dr. (15)
( L ’

Itis not difficult to show that (13) also guarantees that lim, ., T ' j(: wu(T,B,~B:)ydr
is u(B,) [resp. u(B,)]if B, and B have finite measure [resp. B} and B. have finite
measure]. Thus (15) shows that

I
lim T 'J [Th=hl:=XYlc"u(A)+ X [c| w(A,) = 2|ih|;

and so (5) holds.
To show (6) holds, note that from (14),

n

=Y e, =¢l|"la = al"u(A, (0 u AL ().

Lkd o0

I T.h—h
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Condition (13) applies to show

I
lim T ' [ [ T.h=h| " de
1o

- U

vopg |

, rn
= !lm T ‘J’ Vol e M T CAL D A )

F (AL AU+ p CA D LA L))
TulA, N iA, )] de (16)

It can be shown with a little thought and a little bit more computation that Condition
(13) also guarantees that lim, . 7 ‘j' ut LB, BautlT,B, By dr is equal o
B u (B [resp. ut BBy, wt BBy, wtBautBo it B, B B, B, [resp.
B,.B\ B. B,,B,.B.. B.. By, B,. B.. 8*. B,] have tinite meuasure. [hus (161 shows
that condition (6} holds, and { X,} must be metrically transitive.

We now give an analogous sufficient condition for mixing. As in the last result
the condition on {T,} here in (17} is of a fundamentally ditterent nature than that
on the shift of the process in (7) of Section 3.

Theorem 7. {X,} is mixing if for all A a{T.d:1- 0}, B o{ L1 -0 of fimie
u-medsure,

limu(A~ T,B) 0. 11

Again, (17} guarantees that utE) = x.

Proof. We will verify (9) of Theorem 2. Applyving arguments similar to those in the
proof of Theorem 6, we see that it is enough to have (91 tor simple g and h n
L' (). Let A=suppig)=2{g =0}, B--suppth), and let g and h be bounded by
M. Note that suppt T h) - T,B and that 4 and B are of finite measure. Since

g+ Thill: - Fgill - hi%- 2M A TB),
(17) shows that (93 holds and thus that { X} s mixing.

We now look at laws of large numbers tor doubly stationary processes. For
simplicity we assume that o -1, so that £ N, v and we have tas in Section 5)
that { X,} satisfies a SLLN if and only 1if it satishies 4 weak LIN.

Note that for X, = | T, dZ T 'f) X,dr- [ (T '[! T.b d1d2, the change of
integration being justified as in {4, Theorem 4.6]. But T 'II I dr converges in
L" to E(¢|.¥) by the mean ergodic theorem (see Theorem € of the Appendint. So
by the definition of the stochastic integral, T ']I X, dr converges in probability,
and hence a.s., to f, E($|9)dZ This proves

Theorem8. Letl- a< 2 Thenas T~ x T ' I.: X, dtconcerges a.s.and in probabthy
to a random variable distributed as {, Ftd 7147, Thus { X} satisfies the SLIN of
and only if F(614) =0 ae [u]
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It tolows, for 1- « = 2. that g necessary condition for metric ransuiciny of 1 \,)
15 Etdid) - 0, and that if every ser of 4 has either zero of infimte w-medsure, then
{X,} sanshes the SLELN.

These results allow us to construct examples showing that neither of the conditions
“ergodicity of { T} or “metric transitivity of { X} implies the other. To mention
one such example, fet 1- o - 2, {T,} be translation by rimod 1) on [0 1), &
Lor o oo and X, | TedZ Then (i AT} i ergodic (i) LN} sainfies the
SLLN, and ¢iii) 1 X} o8 not metrically transtive. (1) 1s obvious, and i) follows from
(i) and Theorem X, since Fio 41 Ecd 41 Fd 0 Toventy (il we note that

‘ I |
,lim TJ‘ I o @ di J ‘T & dt
[T 1
J 2"'ld/¢J‘ 2N nnde

and thus Condition (3410 Theorem | does not hold

Appendix

We collect here some facts from ergodic theory needed throughout the paper
Although we expect that nothing in this presentation s new. we can find no reference
tor Theorems B and ¢ We assume that all (continuous parameter) groups are
strongly measurable 1n order to be able to define the appropniate integrals isee (X,
pp 6856861 We state Theorems A and € 1in the continuous case. but their discrete

versions dre also true

Theorem A. [e1 {U .} be u group of nomerries on ["(F X ) where (F. X w1y an
arhirary measure spuace, and p -1 Then tor all & iy, T }' U dt = P an
I = < where the convergence 1s a.e. and i 1 and P v a projeciion operator onto
M2 I cwy Ut - for all 1)

Proof. The strong convergence tollows from [¥, p. 66210 the discrete case, and [ 8,
p. 6X9] 0 the contindous case. That P s such a projection follows from [R, p 662
and p 68X [ 1] shows that the convergence is also ae

When { U} s induced by g group of measure-preserving set transformations | I}
on o F 2 u we canadently the limat operator P above In the case ut b v vt
v well known that P s the conditional expectation operator given the invanant sets
of 1 Il Inthecase wt F ) v atis the appropnate generalization of such 4 conditional

expectation, which we now describe




3

S. Cambanny, (D Hardin Jr A Weron  Siable processes 17

Theorem B. For (E, 3, u) an arbitrary measure space and X, a sub-cr-field of X, the
orthogonal projection of L*(X) onto L(X,) has a unique extension by contnuity 1o a
positive contractive projection E( 'X,) of L™(X) onto L' X)) for 1~ p~2 F(1 X
is characierized as the unique X,,-measurable function in L" satisfying | . For Xdpu
]“,/‘d,u tor all Ac X, of finite measure.

Proof. Denote by Q the orthogonal projection of L'(X)onto L'(3,). Forall A. X,

with finite measure and f« L{3), 1, is orthogonal to f - Qf and so

J’ Qfdu = [+ fdpu (1%
\

This characterizes Q in the sense that Qf i the unigque 2,,-measurable function in
L’ which satisfies (18). Relation (18} also shows that Q is positive, ie. Qf -0 ae
if =0 ae.. and |Qf1~ Q|f]. This, coupled with (18) and the fact that the support
of any /« L’ is o-tinite, shows that Q' ~ f, forany f- L' I = Q now extends
by continuity to a positive contractive projection £+ X, of L'(X) onto L't3,)
satisfying (18) for all f« L'. The Riesz Convexity Theorem [X, p. 525] shows that
the last statement is true with | replaced by p 11 p- 2).

It is clear that for utE)- x, F(- X, is the standard conditional expectation
operator E(-1X,).
We can now state the ergodic theorem needed in Section 6.

Theorem C. Ler (E, X ) be arbitrary, the group { T} be induced bv a group of
measure-preserving, set transformations of X oand 4 - {A. 2. T A Atorall i) For
b Lou),

1
T 'I Todt-Egp 7
as T = x_where the convergence is a.e. and in L™ if (i) 1+ p= 2 orif tnrp 1 and
utEre x|

Proof. Theorem A gives us that T ']‘f T, d1 converges to a projection P on A 2
{f  L": T, =1 for all 1} in the appropriate senses if 1+ p= 2 For p 1, the
convergence follows from [&, p. 602 and p. 675] for the discrete case, and [8, p. 689
and p. 690] for the continuous case. It remains to identify P as F(- /).

P as an operator on L™ must be a contraction, being the strong limit of ontractions
In a Hilbent space there is but one contractive projection onto a ginen subspace,
namely the orthogonal projection onto that subspace. Since it is easy to verity that
M - LME 4 u), wehavethat P- Ec-i4)1on L and hence that P Fo- Jron I’
by Theorem B.
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